
SANDIA REPORT
6$1'����±����
8QOLPLWHG�5HOHDVH
3ULQWHG�-XQH�����

The Generalized Security Framework

Richard J. Detry, Stephen D. Kleban, Patrick C. Moore

3UHSDUHG�E\
6DQGLD�1DWLRQDO�/DERUDWRULHV
$OEXTXHUTXH��1HZ�0H[LFR��������DQG�/LYHUPRUH��&DOLIRUQLD�������

6DQGLD�LV�D�PXOWLSURJUDP�ODERUDWRU\�RSHUDWHG�E\�6DQGLD�&RUSRUDWLRQ�
D�/RFNKHHG�0DUWLQ�&RPSDQ\��IRU�WKH�8QLWHG�6WDWHV�'HSDUWPHQW�RI
(QHUJ\�XQGHU�&RQWUDFW�'(�$&�����$/������

$SSURYHG�IRU�SXEOLF�UHOHDVH��IXUWKHU�GLVVHPLQDWLRQ�XQOLPLWHG�

+UUWGF� D[� 5CPFKC� 0CVKQPCN� .CDQTCVQTKGU�� QRGTCVGF� HQT� VJG� 7PKVGF� 5VCVGU
&GRCTVOGPV�QH�'PGTI[�D[�5CPFKC�%QTRQTCVKQP�
016+%'���6JKU�TGRQTV�YCU�RTGRCTGF�CU�CP�CEEQWPV�QH�YQTM�URQPUQTGF�D[�CP
CIGPE[� QH� VJG� 7PKVGF� 5VCVGU�)QXGTPOGPV�� 0GKVJGT� VJG� 7PKVGF� 5VCVGU
)QXGTPOGPV� PQT� CP[� CIGPE[� VJGTGQH�� PQT� CP[� QH� VJGKT� GORNQ[GGU�� PQT� CP[� QH
VJGKT� EQPVTCEVQTU�� UWDEQPVTCEVQTU�� QT� VJGKT� GORNQ[GGU�� OCMGU� CP[� YCTTCPV[�
GZRTGUU� QT� KORNKGF�� QT� CUUWOGU� CP[� NGICN� NKCDKNKV[� QT� TGURQPUKDKNKV[� HQT� VJG
CEEWTCE[�� EQORNGVGPGUU�� QT�WUGHWNPGUU�QH� CP[� KPHQTOCVKQP�� CRRCTCVWU�� RTQFWEV�
QT� RTQEGUU� FKUENQUGF�� QT� TGRTGUGPVU� VJCV� KVU� WUG� YQWNF� PQV� KPHTKPIG� RTKXCVGN[
QYPGF�TKIJVU��4GHGTGPEG�JGTGKP�VQ�CP[�URGEKHKE�EQOOGTEKCN�RTQFWEV��RTQEGUU��QT
UGTXKEG� D[� VTCFG� PCOG�� VTCFGOCTM�� OCPWHCEVWTGT�� QT� QVJGTYKUG�� FQGU� PQV
PGEGUUCTKN[� EQPUVKVWVG� QT� KORN[� KVU� GPFQTUGOGPV�� TGEQOOGPFCVKQP�� QT� HCXQTKPI
D[� VJG� 7PKVGF� 5VCVGU�)QXGTPOGPV�� CP[� CIGPE[� VJGTGQH�� QT� CP[� QH� VJGKT
EQPVTCEVQTU�QT�UWDEQPVTCEVQTU��6JG�XKGYU�CPF�QRKPKQPU�GZRTGUUGF�JGTGKP�FQ�PQV
PGEGUUCTKN[�UVCVG�QT�TGHNGEV�VJQUG�QH�VJG�7PKVGF�5VCVGU�)QXGTPOGPV��CP[�CIGPE[
VJGTGQH��QT�CP[�QH�VJGKT�EQPVTCEVQTU�

2TKPVGF� KP� VJG� 7PKVGF� 5VCVGU� QH� #OGTKEC�� 6JKU� TGRQTV� JCU� DGGP� TGRTQFWEGF
FKTGEVN[�HTQO�VJG�DGUV�CXCKNCDNG�EQR[�

#XCKNCDNG�VQ�&1'�CPF�&1'�EQPVTCEVQTU�HTQO
1HHKEG�QH�5EKGPVKHKE�CPF�6GEJPKECN�+PHQTOCVKQP
2�1��$QZ���
1CM�4KFIG��60�������

2TKEGU�CXCKNCDNG�HTQO�
���������������(65���������

#XCKNCDNG�VQ�VJG�RWDNKE�HTQO
0CVKQPCN�6GEJPKECN�+PHQTOCVKQP�5GTXKEG
7�5��&GRCTVOGPV�QH�%QOOGTEG
�����2QTV�4Q[CN�4F
5RTKPIHKGNF��8#�������

06+5�RTKEG�EQFGU
2TKPVGF�EQR[���#��
/KETQHKEJG�EQR[���#��

- 3 -

SAND2001-8338
Unlimited Release
Printed June, 2001

The Generalized Security Framework

Richard J. Detry, Stephen D. Kleban, Patrick C. Moore

Sandia National Laboratories
Albuquerque, NM 87185

ABSTRACT

The Generalized Security Framework (GSF) consists of a set of libraries, classes, and tools that
provide developers with the ability to easily secure distributed applications and collaborative
environments. The GSF uses and enhances the Generic Security Services API (GSSAPI) to
provide authentication, authorization, data protection, delegation, and auditing. It currently
works with either DCE or Kerberos as the underlying security mechanism, and it has been
designed so support for PKI can be easily added in the future. DCE/Kerberos is a scaleable,
mature, robust security infrastructure embraced and accredited throughout the Nuclear Weapons
Complex (NWC) for a secure collaborative modeling and simulation environment. The goal of
the GSF is to provide a common security foundation that can be applied and extended to create
secure distributed applications, independent of the communications protocol.

The GSF provides a number of extensions that embed GSF security in specific remote
communication APIs, such as Java sockets and Java RMI. The extensions have been designed
and implemented in such a manner as to require minimum changes to application code in order
to move from an unsecure application to a secure application. The advantage of this approach is
that security can be enforced reliably and consistently since very little is required of the
application developer. In this paper, the authors describe the goals, design, and implementation
of the Generalized Security Framework.

- 4 -

This page intentionally left blank

- 5 -

Table of Contents
1 INTRODUCTION ... 7

2 DCE/KERBEROS INFRASTRUCTURE ... 8

3 GENERIC SECURITY SERVICES API .. 9

3.1 ESTABLISH GLOBAL IDENTITIES.. 10
3.2 ESTABLISH A SHARED SECURITY CONTEXT... 10
3.3 TRANSFER DATA ... 10
3.4 DESTROY THE SECURITY CONTEXT... 11
3.5 DELEGATION ... 11
3.6 SHORTCOMINGS OF THE GSSAPI .. 12

4 ADDITIONAL GSF FEATURES .. 12

4.1 OBTAINING INFORMATION ABOUT THE INITIATOR... 12
4.2 AUTHORIZATION ... 13
4.3 AUDITING.. 13
4.4 ESTABLISHING A DELEGATED CREDENTIAL ... 13
4.5 OBTAINING VALUES OF REGISTRY ATTRIBUTES.. 13

5 GSF DESIGN... 14

5.1 C++ LAYER... 14
5.2 JAVA LAYER.. 15

6 GSF EXTENSIONS... 16

6.1 SECURING SOCKET APPLICATIONS .. 16
6.1.1 GsfServerSocket .. 16
6.1.2 GsfSocket... 16
6.1.3 GsfOutputStream... 17
6.1.4 GsfInputStream ... 17
6.1.5 Using the Socket Extension ... 18

6.2 SECURING JAVA RMI APPLICATIONS .. 18
6.3 SECURING CORBA APPLICATIONS ... 18

7 GSF WEB... 20

8 CUSTOMERS.. 21

8.1 DISTRIBUTED RESOURCE MANAGEMENT .. 21
8.2 SAMPLL .. 21
8.3 COMPASS .. 21

9 FUTURE WORK... 21

10 CONCLUSION.. 22

11 REFERENCES .. 22

- 6 -

ACRONYMS

API – Application Programming Interface
ASCI – Accelerated Strategic Computing Initiative
CoMPASS – Confederation of Models to Perform Assessments of Stockpile
Stewardship
CORBA – Common Object Request Broker Architecture
DCE – Distributed Computing Environment
DFS – Distributed File System
DOE – Department of Energy
DRM – Distributed Resource Management
GSF – Generalized Security Framework
GSSAPI – Generic Security Service Application Programming Interface
IDL – Interface Definition Language
IETF – Internet Engineering Task Force
JSP – Java Server Pages
MIT – Massachusetts Institute of Technology
NWC – Nuclear Weapons Complex
PKI – Public Key Infrastructure
RMI – Remote Method Invocation
SAMPLL – Simplified Analytical Model of Penetration with Lateral Loading

- 7 -

1 Introduction

At Sandia National Laboratories and collaborating DOE facilities, distributed applications are
being developed in order to provide desktop access to modeling and simulation applications that
make use of shared, high-performance compute and data resources. Most of these distributed
applications are being developed in object oriented languages, such as Java and C++, using
modern protocols and middleware such as Java sockets, Java RMI, and CORBA. But the
compute resources and the information they serve are required by DOE regulations and
laboratory policies to be strictly controlled. Therefore, to be useful, these applications must be
highly secured, typically to a level commensurate with operation on classified networks within
the DOE Complex. The purpose of the Generalized Security Framework (GSF) is to enable
distributed applications operating in a heterogeneous environment to be secured simply, reliably,
and consistently.

The GSF consists of a set of libraries, classes, and tools that provide developers with the ability
to easily secure distributed applications and collaborative environments developed with either
C++ or Java. The GSF uses and enhances the Generic Security Service Application Program
Interface (GSSAPI) to provide authentication, authorization, data protection, delegation, and
auditing. It currently works with either DCE or Kerberos as the underlying security mechanism,
and it has been designed so support for PKI or other security mechanisms can be easily added in
the future. DCE/Kerberos is a scaleable, mature, robust security infrastructure embraced and
accredited throughout the DOE Complex for a secure collaborative modeling and simulation
environment. The goal of the GSF is to provide a common security foundation that can be
applied and extended to create secure distributed applications, independent of the
communications protocol.

The GSF also provides a number of extensions that embed GSF security in specific remote
communication APIs, such as Java sockets and Java RMI. These technologies are familiar and
attractive to developers, who unfortunately are often unaware that they are fraught with security
risks: the network connections are not authenticated and data is passed over these connections as
clear text. Occasionally the developer has invested significant design and development effort
before learning that the application is unacceptable from a security perspective. The GSF
extensions have been designed in such a manner as to require minimum changes to application
code in order to provide authentication, data integrity, and data privacy to these remote
communications. The advantage of this approach is that security can be enforced reliably and
consistently since very little is required of the application developer. Additionally, we can
frequently ‘rescue’ an application that has been developed with insufficient attention to security.

- 8 -

Figure 1 provides a high-level diagram of the GSF. The remainder of this paper will describe
each of these components in more detail.

Figure 1 A high-level diagram of the Generalized Security Framework

2 DCE/Kerberos Infrastructure

The DOE laboratories, in conjunction with DOE accreditation authorities, have invested years in
the selection, testing, and accreditation of a security infrastructure. This infrastructure is
grounded on the use of Kerberos [1,2] as an authentication mechanism. In addition, the labs have
deployed and cross-certified their Kerberos infrastructure, which is based upon the Distributed
Computing Environment (DCE) [3]. In addition to Kerberos authentication services, which are
based upon MIT Kerberos Version 5 [4], DCE provides authorization services, directory
services, and a secure Distributed File System (DFS). DCE cells have been implemented at
numerous sites and are accredited by DOE for cross-cell authentication over SecureNet (the
network that connects classified environments at the DOE research laboratories and
manufacturing facilities). Thus a user may log in to their home cell, acquire DCE credentials, and
use those credentials to log in to resources and access data at the other sites without an additional
log in. DCE authorization services provide access controls to DCE objects and DFS files based
on a standard model. Furthermore, these access controls may be fully distributed, so that users
and groups at one site may be allowed to control access to objects or files that are hosted at
another. This provides a convenient and appropriate security model for inter-site access.

One of the advantages of DCE is that, being based upon Kerberos, it can also serve as a Kerberos
Key Distribution Center. Since Kerberos source is available and it has been ported to a larger
number of platforms than DCE, including Linux and Macintosh, it is possible for these additional
platforms to use the DCE security infrastructure via the Kerberos libraries and obtain an
important subset of the DCE functionality. This also allows applications to be secured using
pure Kerberos or DCE without having multiple security infrastructures.

KerberosDCE

GSSAPI

GSF

GSF Extensions

Applications

- 9 -

3 Generic Security Services API

The GSF accesses the underlying security mechanism primarily through the Generic Security
Service Application Program Interface (GSSAPI). The choice of GSSAPI as the underlying
abstraction for GSF naturally followed from the fact that we have a DCE/Kerberos security
infrastructure and both DCE and Kerberos provide GSSAPI interfaces. Irrespective of that fact,
we feel that GSSAPI has proven to be an excellent basis for the Generalized Security Framework
because:

• GSSAPI is based on an Internet Engineering Task Force (IETF) standard [5,6] and is the
basis for a number of IETF common authentication technologies.

• GSSAPI is available in many commercially supported security products (DCE, Solaris,
Entrust, CyberTrust). Microsoft Windows 2000 provides a GSSAPI-like API, and at the
network token level, it is GSSAPI compliant [7].

• GSSAPI is freely available in source distributions, including Globus/GSI [8,9] and MIT
Kerberos[4].

• GSSAPI makes it possible to port an application from one infrastructure/mechanism to
another. In at least one case (Globus) it is possible to convert a distributed application from a
PKI based infrastructure to a Kerberos based infrastructure simply by relinking the
application.

• GSSAPI provides documented and standard security abstractions that can be understood by
developers, and once understood will be applicable to most security infrastructures and
environments.

The basic security abstractions provided by GSSAPI are:

• Principal or global identity - something or someone who can be authenticated as a participant
in a secure conversation.

• Credential – something that can be acquired by an object that wishes to assume a global
identity.

• Security context – a state shared by two ends of a secure conversation.
• Initiator – an object that initiates a security context.
• Acceptor – an object that accepts a security context.
• Delegated credential – something that can optionally be forwarded by an initiator in order for

the acceptor to act on behalf of the initiating identity.
• Confidentiality – a property that causes the conversation between an initiator and acceptor to

be encrypted to prevent eavesdropping of data in transit.
• Integrity – a property that causes the conversation between an initiator and acceptor to be

secure against tampering with data in transit.
• Mutual Authentication – a property that assures that if the initiator specifies the identity of

the acceptor, and the acceptor specifies the identity of the initiator, no conversation will be
established unless both are securely authenticated.

- 10 -

There are four phases involved in a typical GSSAPI application:
• establish global identities,
• establish a shared security context,
• transfer data
• destroy the security context.

3.1 Establish Global Identities
Before attempting to establish a context, both the initiator and the acceptor must establish their
global identities and obtain credentials. A human user accomplishes this step by performing
either a dce_login or a kinit from the keyboard. A server obtains its credentials from a key table
(usually called a keytab) file. This step is accomplished programmatically from within the
GSSAPI.

3.2 Establish a Shared Security Context
Once the initiator and acceptor have obtained credentials, they can establish a shared security
context. The initiator begins the process by making a GSSAPI call to initialize a context.
Parameters to this call include the principal name of the acceptor with which the context is to be
established and the requested options for the context. The most common options include mutual
authentication and delegation. The GSSAPI routine returns a cryptographically protected, opaque
token that contains information that is used by the acceptor to identify and authenticate the
initiator. This token must be sent to the acceptor using the transport protocol or middleware that
is being used by the application.

The acceptor takes the client’s authentication token and passes it into another GSSAPI routine to
accept the context. This routine essentially authenticates the initiator. It returns an opaque token
to the acceptor that can subsequently be used by the initiator to authenticate the acceptor. This is
only required if the initiator has requested mutual authentication. This token must therefore be
sent back to the initiator, which then makes another call to the GSSAPI to authenticate the
acceptor. In some cases, the process of obtaining and exchanging authentication tokens must be
repeated until enough information has been obtained for each side to authenticate the other.

Once each party has been authenticated, each side has a context id that identifies the established
security context. This context id can then be used to protect the data that is to be transmitted
between the initiator and the acceptor.

3.3 Transfer Data
Once a secure context has been established between the initiator and the acceptor, they can
transfer data securely. The GSSAPI per-message security services can provide either of the
following:

• integrity and authentication of data origin
• confidentiality, integrity, and authentication of data origin

- 11 -

In the first case, a cryptographical signature of the data is generated and passed along with the
data to the peer. The peer then verifies that the signature matches the data, which ensures that the
data was signed using the shared security context and that the data has not been modified,
intentionally or otherwise, during transit. In the second case, the original data is
cryptographically sealed (encrypted) and then passed to the peer, who subsequently unseals
(decrypts) the data. If the data is successfully unsealed, the application can be sure that the
original data was sealed using the shared security context and that the data has not been modified
or viewed while in transit. The process of sending and receiving protected messages between the
initiator and acceptor can continue as long as the shared security context remains valid. The
context will remain valid until it expires or is destroyed.

3.4 Destroy the Security Context
Once the initiator and acceptor have finished exchanging data, the context should be destroyed in
order to free system resources and ensure that the context can no longer be used. The most
common way to destroy a context is to have the initiator make a GSSAPI call that destroys the
context. This call returns an opaque token that is passed to the acceptor, which passes the token
into another GSSAPI routine that destroys the context on the acceptor side. Another approach to
destroying the context is simply to have both the initiator and the acceptor directly make the
GSSAPI call to destroy the context. This approach does not require the transmission of a token.
At this point, either approach can be used. In the future, however, the GSSAPI might require that
a token be passed between the initiator and acceptor to properly destroy the context.

It is important to note that all information regarding the context resides in the application’s
process memory. Therefore, when the application stops running, gracefully or otherwise, the
contexts that it has established are no longer valid.

3.5 Delegation
Another important concept, especially in distributed systems, is delegation. The initiator can
delegate rights to allow the acceptor to act as its agent. Delegation means the initiator gives the
context acceptor the ability to initiate additional security contexts as an agent of the initiator. To
delegate, the context initiator sets a flag on the call to the GSSAPI routine to request a context,
indicating that it wants to delegate. The initiator then sends the returned token in the normal way
to the acceptor. When the acceptor passes this token to the GSSAPI routine to accept the context,
a delegated credential handle is generated. The acceptor can then use this credential to initiate
additional security contexts.

- 12 -

3.6 Shortcomings of the GSSAPI
The GSSAPI is very useful and provides an excellent foundation for securing distributed
systems, but it does have a few shortcomings:
• The GSSAPI provides no authorization or auditing capabilities. For many systems, enforcing

need-to-know requirements is essential, and having audit trails available is highly desirable,
sometimes critical. There are works-in-progress, including IETF drafts for standardizing a
“Generic Authorization and Access control Application Program Interface “(GAA-API)

• It does not take full advantage of the underlying security mechanism. Since the GSSAPI was
explicitly designed to be generic and applicable to many security mechanisms, mechanism-
specific features are not accessible via the GSSAPI. This might not be an issue for many
applications, but others frequently require access to these features.

• The implementations of the GSSAPI are inconsistent. Some features implemented by one
security mechanism are not implemented by others, and the different security mechanisms
frequently use different data types.

• The current GSSAPI offers an incomplete interface for exporting a security context with a
delegated credential. This will hopefully be resolved in future enhancements to the standard.

• It is not object oriented and provides no direct support for Java. Most modern distributed
applications use object oriented languages and middleware, which makes it difficult to use
the GSSAPI. This is especially true of applications written in Java, which can only access
the GSSAPI implementations via a Java Native Interface (JNI) layer [10,11].

The GSF addresses these shortcomings by providing greater access to the underlying security
mechanism, adding a logging capability, hiding the differences between the GSSAPI
implementations, and bridging the gap between the GSSAPI and object oriented languages and
middleware.

4 Additional GSF Features

The GSF provides many features above and beyond those available directly through the
GSSAPI. The availability of features is, of course, dependent upon the underlying security
mechanism. For example, DCE provides many features above and beyond those available when
using Kerberos, whereas Kerberos provides superior performance. The GSF makes it very
simple to switch between underlying security mechanisms, but specific security or performance
requirements typically dictate which security mechanism should be used. This section describes
the additional security features provided by the GSF and to which security mechanism the
features are applicable.

4.1 Obtaining Information about the Initiator
The GSF provides a simple way for the acceptor to obtain information about the initiator,
including his principal name, local name, and realm. If DCE is being used as the underlying
security mechanism, the groups to which the initiator belongs can also be obtained. The group
information can be used to make simple access control decisions.

- 13 -

4.2 Authorization
When DCE is used as the underlying security mechanism, the GSF provides a robust
authorization utility that can be used to enforce need-to-know requirements. Access control lists
(ACLs) are stored in the DCE Cell Directory Service (CDS) as directories and objects.
Typically, a CDS directory corresponds to a server, while a CDS object below the server
directory corresponds to a server method. In this fashion, per-server or per-method access
control can be provided. This approach provides great flexibility in implementing access control
for a distributed application and allows the resource owner to explicitly allow or deny any local
or foreign user, group, or delegate.

4.3 Auditing
Regardless of which security mechanism is being used, the GSF provides a simple logging
capability. A time-stamped message is written to a log file for each security relevant event,
including

• Context establishment
• Results of an authorization check
• Context deletion
• Delegation

These log files can be audited as necessary to look for discrepancies or simply to determine
usage. Applications can also write messages to the log file as necessary.

4.4 Establishing a delegated credential
Delegated credentials are a GSSAPI opaque abstraction that must be protected and handled in a
mechanism-specific manner when established for use by an acceptor that wishes to act as a
delegate on the client’s behalf. In the GSF, applications have methods available for creating a
login context (DCE) and exporting a credential (Kerberos) to support this. These methods
establish a login context so that the acceptor may access DCE objects or execute applications as
if the user or user-delegate was currently logged in.

Establishing a delegated credential must be done carefully in multithreaded environments
because an established login context is process-wide, not thread-specific. Mutexes, synchronized
java methods, and forked sub-processes are used to assure that execution threads never have
unintended access to another thread’s established context.

4.5 Obtaining Values of Registry Attributes
Another option that is available when using DCE is the ability for the acceptor to obtain the
value of a registry attribute for the initiator. A registry attribute is an attribute that is associated
with a principal’s account. These attributes are defined, created and set by DCE administrators,
then the value of the attribute can be set for each principal in the cell. One such attribute used at
Sandia defines the principal’s DFS home directory, which can be used by a server to securely
access or store information on behalf of the principal.

- 14 -

5 GSF Design

Since the GSF primarily uses the GSSAPI to access the functionality of the underlying security
mechanism, it should come as no surprise that the GSF class names frequently include common
GSSAPI terms such as initiator, acceptor, and context. The main GSF classes and their purpose
are summarized below:

• GsfContext - contains the methods that are common to both acceptors and initiators, such as
the data protection methods and the methods to destroy the context.

• GsfInitiator - contains the methods that are used by a context initiator to establish secure
contexts with an acceptor

• GsfAcceptor - contains the methods used by a context acceptor to initialize itself, accept
contexts, obtain info about the initiator, and authorize the initiator.

• GsfBuffer - used to pass data to and retrieve data from a number of other GSF methods;
simplifies the interaction with the opaque tokens used by the GSSAPI.

• GsfInitiatorData - provides information to an acceptor about the initiator, including global
name, local name, realm, and group membership.

• GsfException - the fundamental GSF exception. Most exceptions thrown by the GSF are of
this type, although other exceptions are defined and thrown in cases where the application
might want to identify and respond to a particular situation. The GSF frequently captures
GSSAPI errors and translates them so they have some meaning to an application developer or
user.

The class names are the same in both the C++ and Java version of the GSF. Using these classes,
security can be easily added to an application independent of protocol.

5.1 C++ Layer
The bulk of the GSF code is written in C++ in order to interact with the DCE and Kerberos
libraries, which are written in C. The GsfInitiator and GsfAcceptor classes are abstract: they
simply define the interface used by the application. The implementation of the interfaces is
contained in classes extended from GsfInitiator and GsfAcceptor, as shown in Figure 2.

The GsfContext class is concrete. The implementation of its methods is not dependent upon the
underlying security mechanism. The GsfInitiator and GsfAcceptor classes are abstract because
the implementations of these methods are typically dependent upon the underlying security
mechanism. For example, the DCE GSSAPI contains functions that are not part of the GSSAPI
standard. One such function must be called in order to obtain a handle to the user’s credentials.
Another function provides a bridge between the GSSAPI and the DCE API, which is used to
access additional features provided by DCE.

The appropriate initiator and acceptor classes are created by a corresponding singleton factory
class. There are generic GsfInitiatorFactory and GsfAcceptorFactory classes that contain create
and destroy methods. These methods are implemented in the appropriate child classes:

- 15 -

GsfKRBInitiatorFactory, GsfDCEInitiatorFactory, GsfKRBAcceptorFactory, and
GsfDCEAcceptorFactory.

Figure 2 Simplified class diagram for the GSF

This design makes it simple to add support for additional security mechanisms should the need
arise. A few simple factory classes would have to be created and implementations of the
GsfInitiator and GsfAcceptor interfaces would have to be provided. Adding support for an
additional security mechanism would remain hidden from the application developers. They
could switch to a different underlying security mechanism by simply compiling with a new GSF
library.

Additional classes in the C++ layer provide support for exception handling, data handling,
logging, debugging, and authorization.

5.2 Java Layer
The Java version of the GSF uses the C++ version via the Java Native Interface (JNI). Therefore,
the GSF Java code is generally a thin layer that simply dispatches the request to the C++ library
via the JNI. In addition, the Java layer performs various sanity checks as well as translation of
exceptions thrown in the C++ code.

GsfContext

GsfKRBInitiatorGsfDCEInitiator GsfDCEAcceptor GsfKRBAcceptor

GsfInitiator GsfAcceptor

+seal

+unseal

+sign

+verify

+deleteContext

+verifyCredentials
+initContext
+initDelegateContext
+authenticateAcceptor
+useImpersonation

+initServer
+acceptContext
+authorize
+setLoginContext
+deleteLoginContext
+exportCredential

- 16 -

The JNI is a powerful, flexible Java feature that allows developers to take advantage of the Java
platform, but still utilize code written in other languages. Using the JNI, however, can be tricky
and requires a bit of practice and experimentation. One of the greatest features of the GSF is that
it provides this JNI layer so application developers using Java can easily take advantage of the
powerful security features provided by DCE and Kerberos.

6 GSF Extensions

The GSF classes described above can be used to secure a distributed application, independent of
the underlying middleware or protocol. However, since most of our target applications are being
developed using sockets, Java RMI [12], or CORBA [13], we have also developed extensions
that enable the GSF to be used with these technologies in a mostly transparent manner. The
application developers can create their application without worrying about security. Then, when
the application is stable, a few simple code changes can be made to incorporate the GSF into the
application. The developers are happy because they don’t have to worry about security, and the
security folks are happy because they have a high degree of confidence that the application has
been secured correctly due to their familiarity with the GSF.

6.1 Securing Socket Applications
Due to its simplicity, the use of Java sockets seems to be on the rise. Due to the object-oriented
nature of Java, we were able to develop an extension that incorporates the GSF into socket-based
applications with only a few changes to the application code. The main classes that comprise the
extension are discussed below.

6.1.1 GsfServerSocket
This class extends java.net.ServerSocket and provides an implementation of the accept method,
along with a new constructor. The constructor adds a number of parameters to those expected by
the ServerSocket class. These additional parameters provide the necessary information for the
server to be initialized so that it can accept secure connections from clients. The implementation
of the accept method calls the ServerSocket.accept method, but rather than returning the
resulting java.net.Socket, it creates and returns a GsfSocket object. This object is subsequently
used by the application to obtain input and output streams that are used to securely exchange
data.

6.1.2 GsfSocket
The GsfSocket class is a wrapper class for java.net.Socket. It contains a number of constructors
for creating GsfSocket objects for use on both the client and server sides. It also provides
implementations of the getOutputStream, getInputStream, and close methods.

The constructors for creating a GsfSocket on the client side work in close cooperation with the
constructors for creating a GsfSocket on the server side in order to exchange the tokens necessary
for mutual authentication and to establish a shared security context. The sequence is initiated
when the server calls the GsfServerSocket.accept method. The implementation of this method
calls java.net.ServerSocket.accept, which blocks until data is written to the socket. This occurs

- 17 -

when the client constructs a new GsfSocket in order to communicate with the server. The
implementation of the GsfSocket constructor calls the regular java.net.Socket constructor, which
results in a regular Java socket being created between the client and the server. Once the regular
Java socket is available, the implementation of GsfServerSocket.accept uses the socket to
construct a new GsfSocket. At this point, the constructor for the GsfSocket on the client side and
the constructor for the GsfSocket on the server side are able to use the regular Java socket to
exchange tokens generated by calls to the GSF to establish a shared security context.

Once the shared security context has been established, the GSF-secured socket can be used to
securely exchange data. The client and server each call the getInputStream and getOutputStream
methods on the GsfSocket object. The implementation of these methods construct
GsfInputStream and GsfOutputStream objects, respectively, and return references to these
objects. These objects are then used by the client and server just as regular java.io.InputStream
and java.io.OutputStream objects would be, but the data written to these streams is transparently
protected.

When the client and server are done exchanging data, they each should call the close method on
the GsfSocket object. The implementation of this method closes the regular Java socket and
destroys the security context.

The GsfSocket class also contains a method that allows the server to obtain the GsfAcceptor
object that is associated with the socket. The server can then call the methods available through
the acceptor to perform authorization, export the user’s credentials, etc.

6.1.3 GsfOutputStream
This class extends java.io.OutputStream and provides implementations of the three write
methods. The write method that accepts a byte array, an offset and a length is called by the other
two write methods. The implementation of this method determines the current protection level
that should be applied to the data on this stream. The data can be sent in the open (no protection)
or it can be signed or sealed. The protection level can be set via a call to the setProtectionLevel
method, or it can be set via a parameter to the GsfSocket constructor. The implementation of the
GsfSocket.getOutputStream method passes the desired protection level as a parameter to the
GsfOutputStream constructor. The protection level can be changed at any time that the stream is
open, which results in a very flexible output stream.

The write method begins by writing the protection level to the stream. It then applies the
necessary level of protection to the data, if any, and then writes the data, the sealed data, or the
data followed by the data’s signature, to the stream.

6.1.4 GsfInputStream
This class extends java.io.InputStream and provides implementations of the three read methods.
The read method that accepts a byte array, an offset, and a length is called by the other two read
methods. The implementation of this method begins by reading an integer that identifies the
level of protection that has been applied by the output stream to the available data. It then reads
the data, then the signature of the data if necessary. If the data has been sealed, it is unsealed. If
the data has been signed, a call is made to verify that the signature matches the data. Providing

- 18 -

that the unseal and verify methods are successful, the requested bytes of the original data are
returned to the caller. If the unseal or verify methods fail, an IOException is thrown.

6.1.5 Using the Socket Extension
Applications that have been developed using Java sockets can be secured using the GSF socket
extension by including the GSF package (gov.sandia.gsfx) and changing two or three lines of
code. On the server side, the call to the java.net.ServerSocket constructor is changed to be a call
to a GsfServerSocket constructor. Similarly, on the client side, the call to the java.net.Socket
constructor is changed to be a call to a GsfSocket constructor. If the application needs to change
to level of protection applied to the data on the socket, an additional call can be made to change
the protection level. That’s all there is to it.

6.2 Securing Java RMI Applications
Java RMI applications can be secured easily using a custom RMI socket factory [14] based upon
the GSF socket extension discussed above. The GSF provides a GsfRMIServerSocketFactory
class, which implements the RMIServerSocketFactory interface, and a
GsfRMIClientSocketFactory class, which implements the RMIClientSocketFactory interface. The
implementation of the application’s remote interface (or interfaces) create instances of these
factory classes and pass them to the constructor of their parent class, which will either be
java.rmi.UnicastRemoteObject or java.rmi.activation.Activatable. The RMI runtime then calls
the createSocket method of the client socket factory and the createServerSocket method on the
server socket factory. The implementations of these methods create the necessary GsfSocket and
GsfServerSocket classes, respectively. The RMI runtime then calls the getInputStream and
getOutputStream methods on the GsfSocket classes, which results in the use of the
GsfInputStream and GsfOutputStream classes. These streams then transparently apply the
requested level of protection to the data. Server applications can also obtain the GsfAcceptor
associated with the current client invocation in order to provide authorization, export credentials,
etc.

Distributed applications can thus be developed using Java RMI without worrying about security.
When the application is nearly complete, a few lines of code are changed and the application is
secured via the GSF.

6.3 Securing CORBA Applications
Due to the many CORBA products and the differences among them, we have not yet developed
an extension to secure CORBA-based applications. We have, however, outlined a simple
strategy that uses the GSF API directly to secure these applications. The strategy involves
adding two methods to the server’s IDL that can be invoked from the client side in order to
establish a security context and destroy an established security context. The IDL for these
methods and the necessary data types and structures is shown below.

- 19 -

typedef sequence<octet> RawData;

struct GsfAuthToken {
long acceptor_id;
RawData signature;

};

RawData init_sec_context(in RawData token, out int index);

oneway void delete_sec_context(in GsfAuthToken token);

The RawData data type is used to exchange the opaque security tokens that are generated by the
GSSAPI routines. The GsfAuthToken structure can be used to identify and authenticate a client in
those situations where a server is simultaneously accepting invocations from multiple clients.
The acceptor_id is generally a key or an index into a data structure on the server side that is used
to store the GsfAcceptor objects, each of which represents a security context with a client. The
signature is generated on the client side by simply signing the acceptor_id. This token is then sent
to the server via an additional argument to every server method. The server obtains the token,
looks up the associated GsfAcceptor using the acceptor_id, and authenticates the client by
verifying the signature. Note that if a server accepts connections with only one client, the use of
the authentication token is not necessary.

In order to establish a shared security context, the client invokes the initContext method on a
GsfInitiator object. This method returns an opaque token that is then sent to the server via the
init_sec_context method. The server passes this token into the acceptContext method on a
GsfAcceptor object, which authenticates the client and returns a token that is returned to the
client. The client passes the token into the authenticateAcceptor method on the GsfInitiator
object in order to authenticate the server. The server also returns an index, which is generally a
key into a data structure that is used to store the GsfAcceptor objects. The client can sign the
index and create a GsfAuthToken structure that will subsequently be sent to the server with every
method invocation.

When the client is done invoking methods on the server, it destroys the security context by
invoking the delete_sec_context method on the server. After this call, the security context is no
longer valid.

Note that most of the above classes and calls can be hidden from the end developer via some stub
and skeleton classes. Thus, for a large CORBA-based application, one person could develop
these stubs and skeletons that could subsequently be used transparently by other developers.
After a number of CORBA-based applications have been secured in the manner outlined above,
we plan to look for patterns to see if we could provide some type of extension that further
simplifies securing CORBA applications using the GSF.

- 20 -

7 GSF Web

There has been significant demand by developers for a system that allows Java servlets and Java
Server Pages (JSP) to be secured using the GSF in order to provide secure access to distributed
resources from a Web browser. This is not especially difficult in the special case where the
servlet or JSP environment runs as a single network identity, typically an ‘entity’ account with
the Kerberos key for that account stored in a keytab file that only the Java servlet environment
can read.

But what developers really want is the ability for a servlet to impersonate the user running the
web browser – i.e., to acquire that user’s DCE/Kerberos credential just as if they had done a NLQLW
on the web server and run the servlet in their own user space. This is problematic for various
reasons:
• Standard HTTP browsers do not support Kerberos authentication.
• Servlets and JSP run all user requests in a single multi-threaded environment.
• The Java runtime has a large footprint, making it inefficient to run multiple runtimes to

support different users’ HTTP requests.
• DCE is multi-thread safe, but does not allow a single process to simultaneously impersonate

more than one user.
• DCE threads may not be compatible with the threads package needed by the Java runtime.
• Kerberos is not entirely thread safe and was not designed to support multi-user sessions.

Nevertheless, we believe that within some constraints we can build a system that permits GSF-
secured servlets and JSP’s that impersonate the end-user. We began piloting such a system in
the spring of 2001. Our system uses HTTP basic authentication protected with SSL to provide
Kerberos/DCE passwords to a modified Apache web server. This authentication method is
standard within ASCI and the NWC. The Apache server converts the passwords to user
credentials and connects to a Tomcat servlet engine running on the Web server host machine.
The Tomcat engine has access, via a Java Native Interface (JNI), to a new, Web-specific initiator
class called GsfWebInitiator. This class was designed such that a servlet always obtains the
credential belonging to the authenticated user associated with the HTTP request.

We are working on ways to allow this engine to efficiently switch security contexts in the Java
runtime as it impersonates multiple users. This requires modifications to Kerberos libraries and
new GSF interfaces for establishing and cleaning up new user-specific security contexts.

- 21 -

8 Customers

The GSF is currently being used by a number of projects, some of which are discussed below.

8.1 Distributed Resource Management
The Distributed Resource Management project (DRM) [15] is developing and deploying
software products to simplify how users interact with high performance computing resources.
DRM software aids in the discovery, reservation, allocation, monitoring, and control of
geographically distributed computational resources throughout the DOE laboratories and
production plants. These resources consist of heterogeneous compute nodes, communication,
storage, visualization, data, and software. A portion of the system is CORBA-based and has
been secured using the GSF. DOE recently accredited this application for operation on the
classified networks linking the three DOE research laboratories.

8.2 SAMPLL
The SAMPLL (Simplified Analytical Model of Penetration with Lateral Loading) application
provides Web-based, desktop access to a variety of penetration analysis and simulation codes.
The system uses a signed applet that communicates via sockets with a compute server. The
compute server, in turn, runs the necessary code or dispatches the request to another server as
necessary. The system has been secured using the GSF socket extension.

8.3 CoMPASS
The CoMPASS (Confederation of Models to Perform Assessments of Stockpile Stewardship)
project is creating a distributed, integrated model of the DOE Complex. This model will be used
to help predict the consequences of decisions about issues ranging from dismantlement
requirements to refurbishment schedules to capital investments, helping decision-makers
evaluate whether the DOE Complex can meet changing demands with anticipated resources over
the next 10 to 30 years. The software has been implemented with Java sockets and is in the
process of being secured with the GSF socket extension. When fully deployed, this application
will be widely distributed, accessing resources at many of the DOE laboratories and production
plants that are located throughout the country.

9 Future Work

Future areas of focus for the GSF include a mixture of research and customer support. We plan
to enhance the GSF as needed in order to accommodate our customers and to build on additional
platforms as necessary. We also plan on investigating the possibility of using the GSF to secure
peer-to-peer systems, which represent a shift in the development of distributed systems.

- 22 -

10 Conclusion

The Generalized Security Framework provides a set of libraries and classes that can be used to
easily secure distributed applications written in C++ or Java, independent of the underlying
middleware or protocol. Extensions to the GSF are also available that make securing
applications using Java sockets or Java RMI trivial. This allows developers of distributed
applications to focus their energy on the task at hand without worrying about security. The GSF
currently works with either DCE or Kerberos as the underlying security mechanism, but has been
designed so additional security mechanisms can be added easily. The GSF provides
authentication, authorization, data protection, auditing, and delegation services and meets the
stringent requirements for operation on classified networks within the DOE complex.

11 References

[1] J. I. Schiller, “Secure Distributed Computing,” Scientific American, November, 1994.
[2] Kohl, J., and C. Neuman, The Kerberos Network Authentication Service (V5), IETF
RFC1510, September 1993. http://www.ietf.org/rfc/rfc1510.txt
[3] DCE, http://www.opengroup.org/dce/index.html, The Open Group.
[4] Kerberos: The Network Authentication Protocol, http://web.mit.edu/kerberos/www/,
Massachusetts Institute of Technology.
[5] J. Linn, Generic Security Service Application Program Interface, IETF RFC1508,
http://www.ietf.org/rfc/rfc1508.txt, September, 1993.
[6] J. Linn, Generic Security Service Application Program Interface, Version 2, Update 1, IETF
RFC2743, http://www.ietf.org/rfc/rfc2743.txt, January, 2000.
[7] “Step-by-Step Guide to Kerberos 5 (krb5 1.0) Interoperability”, Microsoft Corporation,
December 2000,
http://www.microsoft.com/windows2000/library/planning/security/kerbsteps.asp
[8] “The Globus Project”, http://www.globus.org
[9] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J Volmer, V. Welch., A National-
Scale Authentication Infrastructure, IEEE Computer, 33(12):60-66, 2000.
[10] S. Liang, The Java Native Interface Programmer’s Guide and Specification. Addison-
Wesley, 1999.
[11] Java Native Interface, http://java.sun.com/products//jdk/1.2/docs/guide/jni/index.html, Sun
Microsystems, Inc
[12] Java Remote Method Invocation (RMI), http://java.sun.com/products/jdk/rmi/, Sun
Microsystems, Inc.
[13] http://www.corba.org, Object Management Group.
[14] Creating a Custom RMI Socket Factory,
http://java.sun.com/products/jdk/1.2/docs/guide/rmi/rmisocketfactory.doc.html, Sun
Microsystems, Inc.
[15] J. I. Beiriger, H. P. Bivens, S. L. Humphreys, W. R. Johnson, and R. E. Rhea, 2000,
“Constructing the ASCI Grid,” Ninth IEEE International Symposium on High Performance
Distributed Computing, August, 2000.

- 23 -

Distribution:

1 MS 0310 A. L. Hale, 9220
1 0660 J. A. Larson, 9519
1 0661 M. K. Bencoe, 9512
1 0661 R. N. Harris, 9512
1 0806 C. D. Brown, 9332
1 0806 D. A. Hansknecht, 9332
1 0806 P. C. Jones, 9332
1 0806 Glenn Machin, 9332
5 0807 Rich Detry, 8920
1 0820 P. F. Chavez, 9232
1 1137 J. L. Mitchiner, 6534
1 1137 K. C. Bauer, 6534
3 1137 Steve Kleban, 6534
1 1137 W. A. Stubblefield, 6534
1 1137 K. L. Heibert-Dodd, 6535
1 1137 H. P. Bivens, 6535
1 1137 S. L. Humphries, 6535
3 1137 P. C. Moore, 6535
1 1138 B. N. Malm, 6531
1 1138 R. L. Vandewart, 6535
1 1140 S. G. Varnado, 6500
1 9003 K. E. Washington, 8900
1 9011 Barry Hess, 8910
1 9012 Paul Nielan, 8920
1 9012 E. J. Friedman-Hill, 8920
1 9012 Carmen Pancerella, 8920
1 9012 Bob Whiteside, 8920
1 9012 Christine Yang, 8920
1 9012 S. C. Gray, 8930
1 9012 K. R. Hughes, 8990
1 9019 B. A. Maxwell, 8945
1 9019 Ray Trechter, 8945
1 9217 M. L. Koszykowski, 8950
1 9217 P. T. Boggs, 8950
3 9018 Central Technical Files, 8945-1
1 0899 Technical Library, 9616
1 9021 Classification Office, 8511/Technical Library, MS 0899, 9616
1 9021 Classification Office, 8511 For DOE/OSTI

	ABSTRACT
	Table of Contents
	ACRONYMS
	1 Introduction
	2 DCE/Kerberos Infrastructure
	3 Generic Security Services API
	3.1 Establish Global Identities
	3.2 Establish a Shared Security Context
	3.3 Transfer Data
	3.4 Destroy the Security Context
	3.5 Delegation
	3.6 Shortcomings of the GSSAPI

	4 Additional GSF Features
	4.1 Obtaining Information about the Initiator
	4.2 Authorization
	4.3 Auditing
	4.4 Establishing a delegated credential
	4.5 Obtaining Values of Registry Attributes

	5 GSF Design
	5.1 C++ Layer
	5.2 Java Layer

	6 GSF Extensions
	6.1 Securing Socket Applications
	6.2 Securing Java RMI Applications
	6.3 Securing CORBA Applications

	7 GSF Web
	8 Customers
	8.1 Distributed Resource Management
	8.2 SAMPLL
	8.3 CoMPASS

	9 Future Work
	10 Conclusion
	11 References
	Distribution

